DETERMINATION OF THE ABSOLUTE CONFIGURATION OF (-)-S-(2-CARBOXYPROPYL)-L-CYSTEINE

Ronald J. Parry* and Motupalli V. Naidu Department of Chemistry, Rice University P.O. Box 1892, Houston, Texas 77251

<u>Abstract</u>: The absolute configuration of the naturally occurring amino acid (-)-S-(2-carboxypropyl)-L-cysteine has been determined by asymmetric synthesis.

(-)-S-(2-Carboxypropyl)-L-cysteine (9 or 10) is a component of the naturally occurring tripeptide S-(2-carboxypropyl)glutathione that occurs in the onion¹ and in garlic.² Granroth³ has shown that (-)-S-(2-carboxypropyl)-L-cysteine is the precursor of trans-S-(prop-1-enyl)-L-cysteine sulfoxide which is in turn the progenitor of lacrymatory principle of onions. In addition, S-(2-carboxypropyl)-L-cysteine has recently been found to be an intermediate in the biosynthesis of the nematicidal 1,2-dithiolane of Asparagus, asparagusic acid.⁴ The important role played by this amino acid in sulfur metabolism in the Liliaceae makes a knowledge of its absolute configuration highly desirable. We therefore report assignment of the absolute configuration by asymmetric synthesis.

Methyl (S)-(+)-3-hydroxy-2-methylpropanoate (1) was converted to methyl (R)-(+)-3-acetylthio-2-methylpropanoate (2)⁵ by treatment with thiolacetic acid in the presence of DEAD and triphenylphosphine.⁶ Methyl (S)-(-)-3-acetylthio-2-methylpropanoate $(3)^7$ was obtained from the commercially available 8 acid by esterification with diazomethane. Deacetylation of 2 and 3 with sodium ethoxide in ethanol yielded methyl (R)-3-mercapto-2-methylpropanoate (4) and (S)-3-mercapto-2-methylpropanoate (5), respectively. The benzyl ester of (S)-aziridinecarboxylic acid was prepared from L-serine by the method of Nakajima et al.⁹ and acylated with ethyl chloroformate to yield the optically active aziridine derivative 6. The two enantiomeric thiol esters 4 and 5were then each reacted with the aziridine $\underline{6}$ in the presence of boron trifluoride etherate 10 to produce the respective diastereomeric adducts 7 and 8. Finally, 7 and 8 were deprotected by sequential treatment with trimethylsilyl iodide,¹¹ which removed the urethane and benzyl ester moieties, followed by 1 N potassium hydroxide to hydrolyze the methyl ester function. In this way, the two diastereomeric forms of S-(2-carboxylpropyl)-L-cysteine 9 and 10 were obtained. The diastereomer <u>9</u> prepared from the (<u>R</u>)-(+)-acetylthio ester <u>2</u> exhibited $[\alpha]_n^{25} = +34.5^\circ$ (c 0.04, H₀0) while the diastereomer <u>10</u> prepared from the (S)-(-)-acetylthic ester $\frac{3}{2}$ exhibited $[\alpha]_{n}^{25}$ = -58.3° (c 0.04, H₂0). S-(2-Carboxypropy1)-L-cysteine isolated from hydrolysis of S-(2-carboxypropyl)glutathione has been reported¹ to show $[\alpha]_{p}^{21} = -50.1^{\circ}$ (H₂O). Furthermore, Carson¹² resolved the two diastereomeric forms of S-(2-carboxypropy1)-L-cysteine and reported rotations for the two isomers of $[\alpha]_{D}^{25} = -66.1^{\circ}$ (c 2.5, $H_{2}0$) and $[\alpha]_{D}^{25} = +35.8$ (c 1.25, $H_{2}0$). From these data, we conclude that naturally occurring $(-)-S-(2-\operatorname{carboxypropyl})-L-\operatorname{cysteine}$ has the (S) configuration at C-2 and corresponds to structure 10.

Acknowledgment. We thank Dr. Noal Cohen of Hoffmann-La Roche, Inc., for a generous gift of methyl (S)-(+)-3-hydroxy-2-methylpropanoate and the National Science Foundation for financial support.

The author is very pleased to dedicate this paper to Dr. Ulrich Weiss on the occasion of his 75th birthday.

References and Notes

- 1. A. I. Virtanen and E. J. Matikkala, Z. Physiol. Chem., 1960, 322, 8.
- T. Suzuki, M. Sugii, and T. Kakimoto, <u>Chem. and Pharm. Bull. Japan</u>, 1962, 10, 328.
 B. Granroth and A. I. Virtanen, <u>Acta Chem. Scand.</u>, 1967, 21, 1654; B. Granroth, <u>Ann. Acad</u>. <u>Sci. Fennicae, Ser. A.</u>, 1970, 154, 9. 4. R. J. Parry and A. Mizusawa, unpublished observations.
- 5. The rotation exhibited by 2 was $[\alpha]_{D}^{25} = +59.8^{\circ}$ (c 0.16, EtOH). 6. R. P. Valante, <u>Tetrahedron Lett.</u>, 1981, 22, 3119. 7. The rotation exhibited by 3 was $[\alpha]_{D}^{25} = -54.7^{\circ}$ (c 0.15, EtOH).

- 8. Chemical Dynamics Corp., South Plainfield, New Jersey.
- K. Nakajima, F. Takai, T. Tanaka, and K. Okawa, <u>Bull. Chem. Soc. Japan</u>, 1978, <u>51</u>, 1577.
 Z. Bernstein and D. Ben-ishai, <u>Tetrahedron</u>, 1977, <u>33</u>, 881.
 R. L. Lott, V. S. Chauhan, and C. H. Stammer, <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u>, 1979, 495.
 J. F. Carson, <u>J. Chem. Soc.</u>, <u>Perkin I</u>, 1977, 1964.

(Received in USA 23 December 1982)